
CSCI 210: Computer Architecture

Lecture 26: Control Path

Stephen Checkoway

Slides from Cynthia Taylor

1

CS History: Apple Lisa

• First mass-market PC that used a
graphical user interface

• Released in 1983

• Cost $9,995 (equivalent to
$29,400 in 2022)

• Used the Motorola 68000 CPU,
the first 32-bit CPU

• Shipped with 1 MB of RAM

Control Path

• Our datapath is complicated, and we don’t use each element
every time

• How do we know which elements to use?

Recall: PLAs

• Derived from truth table
using sum of products

• Allow us to encode
arbitrary functions

• Used to derive control
signals in the data path

Datapath With Control

The Main Control Unit
Control signals derived from instruction opcode

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

0x23,0x2B rs rt offset

31:26 25:21 20:16 15:0

0x04,0x05 rs rt offset

31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always
read

always
read;
not used
for load

write for
R-type and
load

sign-extend
and add

Fetching Instructions

• Read instruction from Instruction Memory

• Updating PC value to address of next (sequential)
instruction

• PC is updated every clock cycle, so it does not need
an explicit write control signal just a clock signal

• Read from memory each time, so we don’t need an
explicit control signal

Read
Address

Instruction

Instruction
Memory

Add

PC

4

Decoding Instructions

• Send fetched instruction’s
opcode to the main control unit

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

Control
Unit

• Read two values from the Register File
• Register File “addresses” are contained in the

instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

0x23,0x2B rs rt address

31:26 25:21 20:16 15:0

R-type

Load/
Store

Producing control signals

After reading opcode

• Produce most control
signals

• Includes the ALUOp
control signal—which
goes to the ALU control
unit—and the ALUSrc
control signal which
selects the ALU’s second
operand

For load/store, our ALU operation will be

A. Add

B. And

C. Set less than

D. Subtract

E. None of the above
lw $t0, 4($t1)

ALU Control Unit

• Combinational logic (the main control unit) derives 2-bit
ALUOp signal from opcode

• ALU Control Unit takes ALUOp and instruction funct field as
inputs and derives a 4-bit ALU control signal

opcode ALUOp Operation ALU function

lw 00 load word add

sw 00 store word add

beq 01 branch equal subtract

R-type 10 arithmetic/logic depends on funct

Main
Control

op
6

ALU
Control

func

2

6
ALUop

ALUctr
4

ALU Control signal
• ALU used for

– Load/Store: op = add

– Branch: op = subtract

– R-type: op depends on funct field

ALU control Function Ainvert Binvert/CarryIn0 Operation

0000 AND 0 0 00

0001 OR 0 0 01

0010 add 0 0 10

0110 subtract 0 1 10

0111 set-on-less-than 0 1 11

1100 NOR 1 1 00

ALU Control

Takes as input 2-bit ALUop (derived from
opcode) and 6-bit funct field; outputs 4 bits

Instruction ALUOp funct ALU function Ainvert Binvert ALU

operation

load word 00 (add) XXXXXX add 0 0 10 (add)

store word 00 (add) XXXXXX add 0 0 10 (add)

branch equal 01 (subtract) XXXXXX subtract 0 1 10 (add)

add 10 (r-type) 100000 add 0 0 10 (add)

subtract 100010 subtract 0 1 10 (add)

AND 100100 AND 0 0 00 (and)

OR 100101 OR 0 0 01 (or)

NOR 100111 NOR 1 1 00 (and)

set-on-less-than 101010 set-on-less-than 0 1 11 (less)

Executing R Format Operations
• R format operations (add, sub, slt, and, or)

– perform operation (specified by funct) on values in rs and rt

– store the result back into the Register File (into location rd)

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

overflow

zero

ALU controlRegWrite

R-type:

31 25 20 15 5 0

op rs rt rd functshamt

10

Note that Register File is not written every cycle (e.g., sw), so we
need an explicit write control signal for the Register File

Select RegDst MemToReg

A 0 X

B 1 X

C 0 1

D 1 0

E None of the above

instruction control signals for ADD?

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

R-type

R-Type Instruction

RegDst

ALUSrc

MemToReg

RegWrite

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

R-type

Executing Load and Store Operations
• compute memory address by adding base register to 16-bit

signed-extended offset field

• store value written to the Data Memory

• load value read from the Data Memory, written to the Register
File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

overflow

zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

Sign

Extend

MemWrite

MemRead

16 32

35 or 43 rs rt address

31:26 25:21 20:16 15:0

Load/
Store

Which wire, if always set to 1 would break lw?

A

B C D

35 or 43 rs rt address

31:26 25:21 20:16 15:0

Load/
Store

Load Instruction

RegDest

MemWrite

MemRead

MemtoReg

RegWrite

35 or 43 rs rt address

31:26 25:21 20:16 15:0

Load/
Store

Executing Branch Operations
• Branch operations involve

– compare the operands read from the Register File during decode for
equality (zero ALU output)

– compute the branch target address by adding the updated PC to
 the 16-bit signed-extended offset field in the instr

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

zero

ALU control

Sign

Extend16 32

Shift

left 2

Add

4 Add

PC

Branch
target
address

(to branch
control logic)

Branch-on-Equal Instruction

Branch

MemWrite

MemRead

AluSrc

RegWrite

35 or 43 rs rt address

31:26 25:21 20:16 15:0

branch

Control Truth Table
R-format lw sw beq

Opcode 000000 100011 101011 000100

RegDst 1 0 x x

ALUSrc 0 1 1 0

MemtoReg 0 1 x x

RegWrite 1 1 0 0

Outputs MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1

Implementing Jumps

• Jump uses word address

• Update PC with concatenation of

– Top 4 bits of old PC

– 26-bit jump address

– 00

2 address

31:26 25:0

Jump

Select Best Answer

A Yes – we need both new control and datapath.

B Yes – we need just datapath.

C No – but we should for better performance.

D No – just changing control signals is fine.

E Single cycle can’t do jump register.

Do we need to modify our design
to do jump?

Datapath With Jumps Added

What will the Signals for Jump be?

Jump

Branch

MemWrite

RegWrite

addi $t1, $t2, 6

Op = 0x08 rs = 10 Rt = 9 Imm = 6

31:26 25:21 20:16 15:0

RegDst

AluSrc

MemtoReg

RegWrite

$t2 holds 5

beq $t0, $t3,
label

Op = 0x04 rs = 8 Rt = 11 Imm = 0x000C

31:26 25:21 20:16 15:0

RegDst

AluSrc

Branch

RegWrite

PC = 0x10FACE04
$t0 holds 5
$t3 holds 5

Reading

• Next lecture: More Control Path

– Section 5.5

35

	Slide 1: CSCI 210: Computer Architecture Lecture 26: Control Path
	Slide 3: CS History: Apple Lisa
	Slide 4: Control Path
	Slide 5: Recall: PLAs
	Slide 6: Datapath With Control
	Slide 7: The Main Control Unit
	Slide 8: Fetching Instructions
	Slide 9: Decoding Instructions
	Slide 10: Producing control signals
	Slide 11: For load/store, our ALU operation will be
	Slide 12: ALU Control Unit
	Slide 13: ALU Control signal
	Slide 14: ALU Control
	Slide 17: Executing R Format Operations
	Slide 18
	Slide 22: R-Type Instruction
	Slide 23: Executing Load and Store Operations
	Slide 24: Which wire, if always set to 1 would break lw?
	Slide 25: Load Instruction
	Slide 26: Executing Branch Operations
	Slide 27: Branch-on-Equal Instruction
	Slide 28: Control Truth Table
	Slide 29: Implementing Jumps
	Slide 30
	Slide 31: Datapath With Jumps Added
	Slide 32: What will the Signals for Jump be?
	Slide 33: addi $t1, $t2, 6
	Slide 34: beq $t0, $t3, label
	Slide 35: Reading

